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Abstract

Planetary geocoding using polyhedral tessellations are a concise and elegant way to organize
both local and global geospatial data that respects and documents locational accuracy.
After a brief review of several such spatial referencing systems, topological, computational,
and geometric properties of one of them are examined. The particular model described in the
remainder of the paper – the octahedral quaternary triangular mesh (O-QTM) – is being devel-
oped to handle and visualize vector-format geodata in a hierarchical triangulated domain.
The second section analyzes the geometric regularity of the model, showing that its facets
are relatively similar, having vertices spaced uniformly in latitude and longitude, and areas
that vary by less than 42 % from their mean sizes. Section 3 describes some fundamental
operations on this structure, including mapping from geographic coordinates into O-QTM
addresses and back again, filtering map detail through the triangular hierarchy and associ-
ating locations that are close together, but in different branches of the tree structure. The
final section outlines and illustrates a recent application of O-QTM to map generalization,
using its multi-resolution properties to enable multiple cartographic representations to be
built from a single hierarchical geospatial database.

1 Hierarchical Polyhedral Modeling of Planetary Locations

Mapmakers and others have attempted to model the earth as a polyhedron for many years,
going back to at least the time of the German artist Albrecht Dürer (1471-1528), whose
drawings of polyhedral globes appear to be the first instance of thinking about mapping the
planet in this way. In the late 19th and early 20th centuries, a number of cartographers, such
as Cahill (Fisher and Miller, 1944; also used by Lugo and Clarke, 1995 in their variant of
QTM), reinvented this idea, projecting the land masses of the Earth to various polyhedra,
then unfolding their facets into flat, interrupted maps. The best known of these is R. B.
Fuller's Dymaxion projection, dating from the early 1940's (Unknown, 1943). Originally
based on a cubeoctohedron, the Dymaxion Map was then recast as an icosahedron, oriented
to the earth in a way that minimized the division of land areas between its 20 facets. Fuller
devised a projection method -- only recently well-enough understood to implement digital
algorithms for it (Gray, 1994; also see Snyder, 1992) --  that has remarkably little distortion.

Pre-computer polyhedral projections all were based on platonic or other simple shapes, and
were intended as amusements or devices that let a paper globe be unfolded to lie flat. They
did not attempt to deal with more complicated cases involving subdivision of polyhedral
facets into smaller ones that would more closely fit the figure of the Earth and have more
inherent accuracy. Fuller's geodesic domes are examples of how a physical polyhedron can
be subdivided to give it greater physical strength per unit weight and span larger areas than
any simple polyhedron is capable. Fuller apparently never treated the Dymaxion map in the
same manner, probably because he viewed it as a physical structure that was nearly optimal
for display of global thematic data, and bringing it to the next level of complexity (either 60
or 80 facets, depending on the method of subdivision) would make the map unwieldy to
manufacture and manipulate, and achieve no particular benefit. Now, it’s a different world.

The digital revolution in mapping and associated geoprocessing techniques have freed map-
makers from such practical constraints and physical limitations, and over the past 30 years
a number of approaches have blossomed for using polyhedra to index and display spatial



data on a world-wide basis for a variety of purposes. Several such models are summarized
in order to indicate how they are alike and in what respects their form and properties differ.

1.1 The Octahedral Quaternary Triangular Mesh (O-QTM) Framework

Inspired by Fuller's maps and domes, the author developed a global digital elevation model
in 1983 that divided a planet into facets defined by a concentric octahedron and cube.
(Dutton, 1984). In 1988 this model was revisited, revised and recast as a tool for spatially
indexing planimetric data in a geographic information system (Dutton, 1989). The cube was
discarded, but the octahedron remained as a geometric basis that roots a forest of eight
quadtrees containing roughly equal triangular quadrants (facets) that approximate a sphere
quite closely after only a few subdivisions. Figure 1a depicts the basis of the O-QTM model,
an octahedron embedded in a spheroid. Figure 1b illustrates the quadrant numbering
scheme, using a map projection that renders every facet at each level as an isosceles right
triangle. Use of this projection  simplifies the computation of addresses, as figure 3 shows.

Figure 1a Figure 1b
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An early implemention of QTM was done by Goodchild and Yang (1991) in an NCGIA hier-
archical spatial data structure (HSDS) project. It used a different facet addressing scheme
from the above, centering on encoding and manipulating data in the multilevel triangular
raster defined by the QTM grid. Twelve- and 15-neighbor chain encoding methods were used
to identify connected components and enable intersection and dilation in a triangular raster.
Visualization software was also created to let users at workstations orient a globe and
zoom in to regions at various levels of detail. A similar, independent project was undertaken
at NASA Goddard Space Center around the same time. The sphere quadtree (SQT) of
Fekete (1990) recursively decomposes facets of an icosahedron into four triangular “trixels”
to spatially index geodata (satellite imagery) and manipulate it directly on the sphere. The
addressing scheme for SQT is similar to that for QTM, but relations between its 20
individual trees are more complex than those of QTM’s 8 facets. Algorithms for finding
neighbors, connected component labelling and other basic operations were developed, but
further SQT development seems not to have taken place. Besides these closely-related
approaches, Lugo and Clarke (1995) have applied QTM itself to indexing and compressing
digital terrain models, and Barrett (1995) -- also of NASA Goddard -- has proposed using
QTM to index astronomical catalogues (looking outward from Earth rather than inward).
Otoo and Zhu (1993) developed a “semi-quadcode” variant of QTM, which was claimed to
be optimized for efficient spatial access and dynamic display of data on a sphere.



Many discussions of this topic tend to hang up on the choice of an initial polyhedron, and
then on what subdivision method should be used. The model explored in this paper is
rooted in an octahedron, for reasons that are explained next. This is not to discount any
other polyhedral approaches, which also make sense given the types and constraints of the
applications their models are intended to support. But the principal one with which we are
concerned – managing vector GIS data for multi-resolution analysis and display – centers on
identifying and negotiating conflicts among vertices and edges of digital descriptions of
point, line and area features. Because the focus of this work is in the vector domain we do
not maintain and manipulate (hierarchical or other) raster images of map data. As section 4
shows, we substitute QTM addresses for coordinates of map features, then analyze these
codes at lower levels of resolution to simplify features and negotiate conflicts among their
vertices to retrieve consistent, simplified feature descriptions at smaller scales.

1.2 Consequences of Different Polyhedral Bases

All polyhedral triangulations other than regular tetrahedra, octahedra and icosahedra have
facets that are non-equilateral or vary in size and shape, becoming more diverse in size and
shape as the mesh densifies. As this is a law of nature that cannot be defeated, why choose
an octahedron for developing a triangular mesh on a sphere? Any of the platonic solids
might do as well, or even less regular polyhedra, such as a cubeoctahedron or a rhombic
dodecahedron (divided into triangles). Why does this choice matter, inasmuch as
descendent QTM facets will vary in size and shape, regardless of what polyhedron one
starts with? The choice may be arbitrary, but does have consequences. If we restrict
ourselves just to polyhedra which have only triangular faces, each of which has the same
area (but not necessarily equal angles or edge lengths), there are still quite a few to chose
from, especially if truncated and stellated ones are included. The simplest case is a
tetrahedron; the octahedron is the next more complex one, followed by the icosahedron, and
then by various archimedean solids. Given that each facet of the original polyhedron roots a
quadtree of triangles that grow smaller and more heterogeneous as they subdivide (see table
3), two consequences in particular need to be considered:

• The larger the spherical area subtended by the initial polyhedral facets,
the more will the areas of sub-facets vary at any given detail level or map scale;

• The greater the number of initial polyhedral facets, the more often will
map features cross facet boundaries (involve traversing two or more data trees).

These phenomena, while inevitable, are both undesirable, because each tends to complicate
certain kinds of computations. The first one penalizes simpler shapes such as tetrahedra
and octahedra by making the variance of error of facet areas greater than necessary. The
second one complicates data management of shapes such as icosahedra by partitioning them
into larger number of rooted trees, each with three edge neighbors and at least four vertex
neighboring trees in the forest. These other trees must be examined when a feature or a search
path crosses an edge or vertex a neighbor shares with the tree of the facet currently being
traversed.

These two constraints offset one another, so that one can trade areal equality for structural
simplicity. The balance to be struck could depend on the application for which QTM data is
to be used. For example, an environmental sampling regime may assume equal probability of
inclusion of random points in a sampling grid, which means that the areas of all facets
should be as nearly equal as possible (which generally requires map projections). An early
example of this approach to tessellation was the work of Wickmen et al (1974). A better-
known example is documented in White et al (1992), describing the EMAP hierarchical data
model developed for the US Environmental Protection Agency. Statistical considerations
(minimizing distance variance between sample points) pointed toward using a basis
polyhedron with a large number of facets, and the one selected (a truncated icosahedron,
familiar as a soccerball, and also as the Fullerene carbon molecule) has 32 of them, 20
hexagons and 12 pentagons. Figure 2 shows this shape, its soccerball variant, and how it is
used in the EMAP program. Orienting the polyhed-ron in this particular way allowed the 48



conterminous US states to fit in one hexagonal facet; but inevitably, this strategy dissected
other nations and territories in inconvenient ways.

Figure 2

Truncated
Icosahedron Soccerball EMAP Model

Illustration courtesy of J. Kimmerling, Oregon State University

Structural simplicity is greatest in a tedrahedron, which has 4 facets, 6 edges and 4 vertices.
Each facet has 3 edge neighbors and 3 vertex neighbors (both the same), a total of 3 unique
neighbors. The EMAP soccerball, on the other extreme, has a more complicated set of
neighborhood relations; the hexagonal facets have 6 edge and no additional vertex
neighbors, and the pentagonal facets have 5 neighbors each. The average number of
neighbors is thus   (20*6 + 12*5)/32, or 5.625. An icosahedron has exactly 9 total neighbors
per facet, and an octahedron has 6 neighbors.

Another way to quantify this is to compare the total number of edge neighbors, a measure of
structural complexity that indexes the number of expected transitions between facets. This
number ranges from 6 for a tetrahedron to 12 for an octahedron to 30 for an icosahedron to
90 for a truncated icosahedron. When one considers how relatively often it may be necessary
to relate data in adjacent trees, the larger polyhedra start to look less attractive, and an
octahedron may be a wise compromise, with only 12 edge adjacencies. Table 1 summarizes
the parameters discussed above; N/F means neighbors per facet; VN is edge neighbors; EN is
edge neighbors; TN is total neighbors.

Table 1

Basis Shape V E F VN/F EN/F TN/F

Tetrahedron 4 6 4 2 3 3
Octahedron 6 12 8 3 3 6
Icosahedron 12 30 20 5 3 9
“Soccerball” 60 90 32 5.625 5.625 5.625
V = Vertices; E = Edges; F = Faces

1.3 Basic Properties of the Octahedral Framework

Perhaps the most compelling reason for using an octahedron as a basis for a QTM is not its
topological properties, but the fact that it can be readily aligned with the conventional
geographic grid of longitude and latitude. When this is done, its vertices occupy cardinal
points and its edges assume cardinal directions, following the equator, the prime meridian,
and the 90th, 180th and 270th meridians, making it simple to determine which facet a point
on the planet occupies. Each facet is a right spherical triangle. Except for the one at the
South Pole, all vertices are located in ocean areas, minimizing  node adjacency problems for
most land-based geospatial data. Table 2 defines the octahedral facets when vertices are at
cardinal points.

O-QTM numbers octants from 1 to 8, proceeding clockwise in the northern hemisphere from



the prime meridian, then continuing in the same direction in the southern hemisphere. One
simple function that computes octant numbers is:

OCT = (1 + LON div 90) - 4 * (LAT - 90) div 90

This will yield an incorrect result at the South Pole but nowhere else. Negative longitudes
must be complemented prior to computing octants. Given the number of an octant, it is easy
to identify neighboring ones, which meet along octant edges except for the North neighbors of
octants 1-4 and the South neighbors of octants 5-8, which meet only at the poles:

EAST_NEIGHBOR(OCT)  = 1 + (OCT + 8) mod 4 + (4 * (OCT div 5))
WEST_NEIGHBOR(OCT)  = 1 + (OCT + 6) mod 4 + (4 * (OCT div 5))
NORTH_NEIGHBOR(OCT) = 1 + (OCT + 9 - 2 * (OCT div 5)) mod 4
SOUTH_NEIGHBOR(OCT) = 9 - (OCT + 9 - 2 * (OCT div 5)) mod 4
                        - (2 * OCT mod 2)

The last two functions can easily be modified to eliminate vertex neighbors, if there is no
need to handle such transitions. Overall, the octahedron has some useful properties and no
significant disadvantages, other than generating subdivisions that have greater areal
variation than do figures having a larger number of facets. An analysis and summary of
QTM areal variation and its consequences is presented in section 2.

Table 2

Octant MinLon MaxLon MinLat MaxLat

1 0 < 90 > 0 90
2 90 <180 > 0 90
3 180 <270 > 0 90
4 270 <360 > 0 90
5 0 < 90 -90 0
6 90 <180 -90 0
7 180 <270 -90  0
8 270 <360 -90 0

2. Areal Inequalities in the O-QTM Tessellation

We embed QTM’s initial octahedron in a sphere by placing its six vertices on the surface of a
unit sphere (which may readily be scaled to Earth radius), such that the distance of the six
octa vertices from the center of the octahedron (sphere) is unity.  All other points (along octa
edges and within octa faces) lie closer to the center than do the vertices, with the centroids
of the eight facets lying at the smallest radius enclosed by the octahedron.  As the QTM
structure develops, it blossoms into a multifaceted polyhedron, having 32, 128, 512, 2048 ...
faces.  This section discusses the size and shapes of these planar facets, all vertices of which
touch a circumscribed sphere, but whose edges are geodesic lines (chords through the
sphere).

Unlike geodesic domes and related polyhedral world models such as described in section 1,
O-QTM does not follow great circles on the sphere in decomposing facets. When a facet is
subdivided, the latitudes and longitudes of pairs of its vertices are averaged to yield edge
midpoint locations. Except along edges of the original octahedron (lat or (lon mod 90) = 0),
these midpoints do not coincide with locations on great circles that connect existing vertices.
Bisecting a facet edge with a normal vector, then extending the normal to the surface will
also bisect the latitudes and longitudes defining the endpoints of that edge only along great
circles, not along small ones (parallels). In addition, halving latitudes and longitudes creates
a tessellation with certain asymmetries; east-west edges -- being parallels -- are straight, but
the other two sets of edges are not straight and only roughly parallel. As a result, most of
the triangles in the QTM network have different shapes and larger areas than would
spherical triangles defined from the same set of vertices. Still, the chord length of any given



edge segment will be identical to that of a great circle passing through the same endpoints,
and can be computed using a standard formula (Snyder, 1987):

sin(arc/2) = {sin2[(lat1-lat2)/2]+cos(lat2)cos(lat1)sin2[(lon2-lon1)/2]}1/2

The chord length (in radians) is twice the value of this expression. Using this result, the
areas of facets can be tabulated via the formula:

Area = (s(s-a)(s-b)(s-c))1/2, where a, b, and c are the chord lengths, and
s = (a+b+c)/2  (half the perimeter).

Plane facet size statistics based on these formulae for the first five QTM levels are present-
ed in Table 3. Note how the total area of the figure rapidly approaches that of a sphere, and
that the ratio of maximum to minimum facet area stabilizes at 1.83... Other indicators of
uniformity are the decline of normalized deviations with level, and the decline of kurtosis
values at higher levels from that of a normal distribution to values characterizing a uniform
one (Bulmer, 1967, p. 64).

Table 3

Area property Level 1 Level 2 Level 3 Level 4 Level 5

Facets* 32 128 512 2048 8192
Min Area 0.28974 0.07554 0.01917 0.00481 0.00120
Max Area 0.43301 0.13188 0.03466 0.00877 0.00220
Max/Min Area 1.49448 1.74583 1.80803 1.82328 1.83333
Mean Area 0.32555 0.09346 0.02424 0.00612 0.00153
Median Area 0.28974 0.09342 0.02387 0.00611 0.00152
Std Dev 0.07164 0.01612 0.00354 0.00083 0.00020
Kurtosis 1.74493 2.91530 2.99556 2.44369 2.15422
Total Area 10.41775 11.96281 12.41066 12.52712 12.55654
Sphere Area 12.56637 12.56637 12.56637 12.56637 12.56637
% of Sphere 82.90183 95.19705 98.76091 99.68765 99.92174
* Statistics for columns are based on n = Facets/8 (single octant).

3 Computational Properties of QTM Identifiers

An O-QTM location code consists of an octant number (from 1 to 8) followed by up to 30
quaternary digits (from 0 to 3) which name a leaf node in a triangular quadtree rooted in the
given octant. Central facets have an ID of 0, and corner facets take the ID of the vertex de-
fining them; when a vertex appears, its number is assigned as six minus the sum of the IDs
of the endpoints of the bisected edge, as figure 3 shows. Each QTM digit doubles linear pre-
cision, identifying a specific facet having slightly more than one-fourth the area of its parent.
For example, the 18-level QTM ID for the building housing the Geography Department at the
University of Zürich is 1133013130312301002; this encodes the geographic location 47˚ 23’
48” N, 8˚ 33’ 4” E within about 60 meters(roughly the length of the building, and close to the
limit of precision obtained from measuring on a 1:25000 scale topographic map), occupying
a QTM facet about 1,000 meters square. Finer resolution, when available, is expressed by
adding low-order quaternary digits to the ID; 30 digits will encode locations to an accuracy
of about 2 cm., and can be expressed as one 64-bit word (Dutton, 1996). Note that these
identifiers have a different sequence of quaternary digits in Goodchild and Yang’s O-QTM
system, and are different still in Fekete’s I-QTM system (the former would identify the same
triangular facet, giving it a different name; the latter would identify a facet having entirely
different vertices and which would be 60% smaller in area for a given number of digits).

One basic operation of any geocoding scheme is determining proximity of points. To date no
complete “native” solution for determining distance between two QTM IDs has emerged, but
heuristics have been developed for closely-related computations. For example, one often



needs to know if two QTM facets share an edge or vertex at some level of detail. There are
three distinct cases:

1. Both facets are interior cells (both IDs terminate in 0)
2. One facet is an interior cell (its ID terminates in 0)
3. Neither facet is an interior cell (neither ID terminates in 0)

The first case rules out edge adjacency, as 0 cells only have non-zero neighbors (but not
conversely). The second case is also trivial, because any 0 cell’s neighbors will also be its
siblings, and their IDs will be identical except for the last digit. The third case is more
interesting; while we cannot easily affirm that two such facets are neighbors, it is easy to
identify many cases where they are not. First, the QTM numbering scheme guarantees that
all facets that share a common vertex must have the same terminal digit, either 1, 2 or 3 (six
facets will share a vertex except at the six vertices of the initial octahedron, where four do).
Second, two facets will be adjacent only if their QTM IDs differ in exactly one digit, and as
the prior sentence asserts, this cannot be the terminal digit as long as case 2 is not true (this
property is also one exhibited by Fekete’s SQT model). Unfortunately, the converse is not
true; many IDs that differ in only one digit are not adjacent. Regardless, if more than one
digit of two IDs differs, one can be sure the two facets are not neighbors. A geometric (rather
than lexical) approach to solving this problem is described in section 3.2.

3.1 Conversion from Geographic Coordinates to O-QTM IDs

Computing a quaternary address for a geographic location involves recursively identifying
child facets of the octant containing the location, and giving each one visited an appropriate
name from the set {0,1,2,3}. Goodchild and Yang (1992) project octants to equilateral
triangles, and apply algorithms that require exponentiation and irrational arithmetic. The
approach used here projects to right isosceles triangles, and requires only linear arithmetic,
which could be performed on properly-scaled integers. The Zenithial OrthoTriangular (ZOT)
map projection (Dutton, 1991) is used to project the 8 octants to a square; the North pole
occupies the center, and the South pole maps to the four corners (see fig. 1b). Each octant is
a right isosceles triangle, as is each QTM quadrant at every level of detail. ZOT space uses
Manhattan Metric, so that distances are always the sum of x- and y-displacements. Figure 3
illustrates this method across two levels of detail.



Figure 3a Figure 3b

s = Facet side length in ZOT metric
s/2 = half side length
dy = ∂Ø; latitude change from origin
dx = ∂λ - dy; other coordinate
If (dx+dy) < s/2 then return (1);
If dy > s/2 then return (2);
if dx > s/2 then return (3);
else return (0);

To encode a QTM ID in Manhattan space, 
test whether the point's X and Y offsets 
sum to less than half the side length; if so, 
return number of Pole Node. If either X or 
Y is greater than half the side, return the 
number of that node; else return 0.
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First Level:
QTMID = 0

Second Level:
QTMID = 01

New nodes in the triangular mesh appear at edge midpoints and are assigned numbers by
subtracting the sum of the nodes of the bisected edge  from 6, as figure 3b shows.

3.2 Conversion from O-QTM IDs to Geographic Coordinates

It is possible to directly convert a QTM ID back to latitude and longitude at any level of
detail it contains, within the accuracy that level of detail denotes. The location computed is
an arbitrary point within a triangle, normally chosen as its centroid. One method for doing
this uses the same algorithm described in figure 3, computing triangle vertices in ZOT space,
but skipping the point-in-triangle test, as a QTM ID specifies what triangle to describe next.
The ZOT centroid of the leaf facet is then de-projected into latitude and longitude. A more
direct and faster method to compute centroids of facets at the desired level of detail, uses a
3-axis coordinate system. The axes connect octant vertices to their opposite edge midpoints
(with a local origin at 30˚N/S, 45˚E/W) to define locations in each of the spherical right
triangles, as figure 4 shows. Starting at the root, each digit is mapped to movement along
one of these axes. However, because the central cell of each group of four siblings is always
coded as 0, encountering a 0 digit denotes no movement, only a reversal of future direction
along all axes. Movement along axes are accumulated in three registers, then projected to the
North-South (“1”) axis and scaled to yield a latitude, which is used in computing longitude.
The following function definitions summarize this approach:

VOID QTMtoAxes(QTMID qid, INT qlen, INT level, BOOL vertex, REAL axes[3])

The function returns no value, placing its result in axes; it will compute a meaningful set of
axial distances from any valid set of input parameters. The role of the vertex parameter is
discussed below. The axes are converted to a latitude and a longitude by the functions:

REAL AxesToLat(REAL axes[3])
REAL AxesToLon(REAL axes[3], lat)



In QTMtoAxes, a distance parameter is initialized at 1/12 the mean circumference of the
Earth, and is divided in half at each level. The same parameter is used in moving along each
of the three axes. However, were we to model an ellipsoid rather than a sphere, we could
generalize this method by implementing a vector of three distance steps (one for each axis,
scaled according to an ellipsoid model). The axes vector that QTMtoAxes returns is then used
to compute first a latitude, then a longitude for the QTM ID being evaluated, at the specified
level of detail.

Path to QTM Address 1313
from octant origin, showing
resultant 1-2-3 axis vectors.

Level 1 & 2 vertices are labeled
with primitive IDs. Note that axes
on path are not same as ID digits.
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We now return to the problem of
determining if two QTM IDs rep-
resent neighboring facets or not.
We wish to evaluate vertex as
well as edge neighbors, because
applications we pursue (for ex-
ample, cartographic generaliza-
tion) must identify nearby points
that may not lie in the same
quadrant or whose QTM IDs do
not share a parent (even a com-
mon ancestor). The above func-
tions can do this when the vertex
parameter of QTMtoAxes() is set
to TRUE. Then, (unless the ID
ends in zero) one more statement
is executed. This causes the loca-
tion of the vertex named by the
last ID digit to be returned rather
than the centroid of the facet
(zero-coded (central) facets are
not associated with any vertex

other than their centroids, and thus have no vertex neighbors). While the axis vectors may
differ considerably, they will evaluate to the same latitude and longitude for each of the six
facets that share this vertex. Effects of round-off errors can be cancelled by comparing
returned pairs of latitudes and longitudes to one another within a tolerance related to QTM
level of detail. Locations in abutting octants require no special handling if longitudes are
offset and axes initialized appropriately in each octant.

4 Application to Cartographic Generalization

The information content of QTM IDs is greater than the coordinates they represent, because
the model denotes scale and accuracy as well as position. By encoding each coordinate of a
cartographic database into QTM at levels of resolution appropriate to the source data (and
these can change from one layer, one feature or even one vertex to another), a multi-resolution
representation results. We consider this to be a potentially more efficient alternative to storing
multiple representations of a set of features (i.e., a separate database for each scale), because
QTM provides a unified description of model data that is potentially capable of rendering
that data across a range of scales. It is also easier to maintain and edit cartographic features
stored in a unified description than a set of multiple representations would be.

Current research involves exploring the above and other algorithms in a feature-based carto-
graphic data processor that receives source data from GISs via cartographic exchange file
formats, encodes features or layers into QTM representations, and extracts this data at
source and smaller scales to test how well this concept of space handles map generalization.
As described in Dutton (1996) and Dutton and Buttenfield (1993), QTM encoding provides
a number of properties beyond hierarchical geocoding that can help identify and potentially
assist in resolving conflicts for map space because of scale change. This requires additional
data structures to achieve, but perhaps not as many as current approaches, such as Jones et
al (1992), which uses a non-hierarchical triangulation across feature classes. This and other
object-based methods model explicit relationships of map geometry (e.g., by topological



simplices). Our approach models space rather than objects; it exploits implicit relationships
that location identifiers denote within a multi-resolution global spatial reference framework.

Figure 5 illustrates an early result of using QTM to generalize vector map features. This set
of polygons (the Swiss canton of Schaffhausen) had been previously filtered via the Douglas
algorithm to 306 segments, of mean length 0.56 km. Analysis of this data indicated that all
its details could be encoded in 18 QTM digits, so that it is represented at roughly 1:100 000.

L: 13

1:4M

(L: 16)

1:500K

L: 15

1:1M

L: 14

1:2M

Figure 5:  QTM Generalization Results at Four Scales
Schaffhausen Canton, Switzerland

The approximate scales are based on the
assumption that the smallest line detail

that can be read off a map is 0.2 mm,
which is about 0.5 point on a printed page.

Lines in this figure are drawn at 0.5 point.

A map of Switzerland
that would fit on this

page would be drawn
at a scale of 1:2 M

(QTM level 14).

Source Data

QTM Filtered Data

The QTM-filtered representations decrease detail to 300 points (0.58 km) at QTM level 16,
to 290 points (0.59 km) at level 15, to 258 points (0.65 km) at level 14, and to 200 points
(0.79 km) at level 13. Typically, the filtering process results in little point reduction near the
limit of resolution, with more changes appearing 2 or 3 levels down, then tapering off again
after 5 or 6 detail levels. The useful range of detail depends on various aspects of both the
digitized data and its application, but would not normally exceed a ratio of about 1:250.
Also, more sophisticated approaches to retaining, displacing and eliminating polyline
vertices in the QTM domain are possible than the experiment illustrated above used, and
will be explored during the course of our project.
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